Reed Relays and
Electronics India Limited
Manufacturer of Reed Switches, Reed Sensors and Reed-based products
Reed Relays and Electronics India Limited Incorporated in 1971
×

Curie Temperature

Curie Point or Curie Temperature is the temperature above which a Ferro-magnetic material loses its Ferro-magnetism and becomes Para-magnetic.

The Nicken Iron alloy used in the construction of Reed Switches tends to retain less and less magnetism as the application temperature goes up, thereby reducing contact forces and leading to a shorter operating life.


Curie Temperature (Wikipedia)

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature.

Figure 1. Below the Curie temperature, neighbouring magnetic spins align parallel to each other in a ferromagnet in the absence of an applied magnetic field.
Figure 2. Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied.

The force of magnetism is determined by the magnetic moment, a dipole moment within an atom that originates from the angular momentum and spin of electrons. Materials have different structures of intrinsic magnetic moments that depend on temperature; the Curie temperature is the critical point at which a material's intrinsic magnetic moments change direction.

Permanent magnetism is caused by the alignment of magnetic moments, and induced magnetism is created when disordered magnetic moments are forced to align in an applied magnetic field. For example, the ordered magnetic moments (ferromagnetic, Figure 1) change and become disordered (paramagnetic, Figure 2) at the Curie temperature. Higher temperatures make magnets weaker, as spontaneous magnetism only occurs below the Curie temperature. Magnetic susceptibility above the Curie temperature can be calculated from the Curie–Weiss law, which is derived from Curie's law.

In analogy to ferromagnetic and paramagnetic materials, the Curie temperature can also be used to describe the phase transition between ferroelectricity and paraelectricity. In this context, the order parameter is the electric polarization that goes from a finite value to zero when the temperature is increased above the Curie temperature.

Curie temperatures of materials
Material Curie
temperature (K)
°C °F
Iron (Fe) 1043-1,664 770 1418
Cobalt (Co) 1400 1130 2060
Nickel (Ni) 627 354 669
Gadolinium (Gd) 292 19 66
Dysprosium (Dy) 88 −185.2 −301.3
Manganese bismuthide (MnBi) 630 357 674
Manganese antimonide (MnSb) 587 314 597
Chromium(IV) oxide (CrO2) 386 113 235
Manganese arsenide (MnAs) 318 45 113
Europium oxide (EuO) 69 −204.2 −335.5
Iron(III) oxide (Fe2O3) 948 675 1247
Iron(II,III) oxide (FeOFe2O3) 858 585 1085
NiO–Fe2O3 858 585 1085
CuO–Fe2O3 728 455 851
MgO–Fe2O3 713 440 824
MnO–Fe2O3 573 300 572
Yttrium iron garnet (Y3Fe5O12) 560 287 548
Neodymium magnets 583–673 310–400 590–752
Alnico 973–1133 700–860 1292–1580
Samarium–cobalt magnets 993–1073 720–800 1328–1472
Strontium ferrite 723 450 842
« Back to Glossary Index