Reed Relays and
Electronics India Limited
Manufacturer of Reed Switches, Reed Sensors and Reed-based products
Reed Relays and Electronics India Limited Incorporated in 1971
×

Resonant Frequency

Resonant frequency of a reed contact, measured in Hertz, is the maximum operating frequency that a reed contact can withstand, after which it chatters, or starts sympathetic vibration.

Resonant Frequency (Wikipedia)
Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator.

Resonance describes the phenomena of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to a natural frequency of the system on which it acts. When an oscillating force is applied at the resonant frequency of another system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.

Frequencies at which the response amplitude is a relative maximum are also known as resonant frequencies or resonance frequencies of the system. Small periodic forces that are near the intrinsic resonant frequency of the system have the ability to produce large amplitude oscillations in the system due to the storage of vibrational energy.

Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonance, acoustic resonance, electromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g., musical instruments), or pick out specific frequencies from a complex vibration containing many frequencies (e.g., filters).

The term resonance (from Latin resonantia, 'echo', from resonare, 'resound') originates from the field of acoustics, particularly observed in musical instruments, e.g., when strings started to vibrate and to produce sound without direct excitation by the player.

For example, electrical resonance occurs in a circuit with capacitors and inductors because the collapsing magnetic field of the inductor generates an electric current in its windings that charges the capacitor, and then the discharging capacitor provides an electric current that builds the magnetic field in the inductor. Once the circuit is charged, the oscillation is self-sustaining, and there is no external periodic driving action. This is analogous to a mechanical pendulum, where mechanical energy is converted back and forth between kinetic and potential, and both systems are forms of simple harmonic oscillators.

« Back to Glossary Index