The International System of Units or Système International d’Unités or SI, is the modern form of the Metric System and is the world’s most widely used system of measurement. It is derived from the MKS system rather than the CGS system.

International System of Units (Wikipedia)

The **International System of Units** (**SI**, abbreviated from the French * Système international (d'unités)*) is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the second, metre, kilogram, ampere, kelvin, mole, candela, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities.

The base units are derived from invariant constants of nature, such as the speed of light in vacuum and the charge of the electron, which can be observed and measured with great accuracy. The last artefact to be used for this purpose was the International Prototype of the Kilogram, a cylinder of platinum-iridium. Concern regarding its stability led to a revision of the definition of the base units entirely in terms of constants of nature, which was put into effect on 20 May 2019.

Derived units may be defined in terms of base units or other derived units. They are adopted to facilitate measurement of diverse quantities. The SI is intended to be an evolving system; units and prefixes are created and unit definitions are modified through international agreement as the technology of measurement progresses and the precision of measurements improves. The most recent derived unit, the katal, was defined in 1999.

The reliability of the SI depends not only on the precise measurement of standards for the base units in terms of various physical constants of nature, but also on precise definition of those constants. The set of underlying constants is modified as more stable constants are found, or may be more precisely measured. For example, in 1983 the metre was redefined as the distance that light propagates in vacuum in a given fraction of a second, thus making the value of the speed of light in terms of the defined units exact.

The motivation for the development of the SI was the diversity of units that had sprung up within the centimetre–gram–second (CGS) systems (specifically the inconsistency between the systems of electrostatic units and electromagnetic units) and the lack of coordination between the various disciplines that used them. The General Conference on Weights and Measures (French: * Conférence générale des poids et mesures* – CGPM), which was established by the Metre Convention of 1875, brought together many international organisations to establish the definitions and standards of a new system and to standardise the rules for writing and presenting measurements. The system was published in 1960 as a result of an initiative that began in 1948. It is based on the metre–kilogram–second system of units (MKS) rather than any variant of the CGS.

Since then, the SI has officially been adopted by all countries except the United States, Liberia, and Myanmar. Both Myanmar and Liberia make substantial use of SI units, as do the scientific, military, and medical communities in the US. Countries such as the United Kingdom, Canada, and certain islands in the Caribbean have partially metricated, currently employing a mixture of SI, imperial, and US Customary units. For instance, road signs in the United Kingdom continue to use miles whilst produce in Canada and the United Kingdom continue to, in certain context, be advertised in pounds rather than kilograms. The incomplete processes of metrication in Canada and the United Kingdom illustrate the complex status of metrication internationally beyond the three countries (US, Myanmar, and Liberia) commonly cited as not having adopted the SI.